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Sub-Gaussian Random Variables

The tail probability of a random variable is usually considered in both
theoretical and empirical studies. Among short-tailed distributions, sub-
Gaussian family distribution is widely assumed. The definition is given be-
low (Vershynin [5]).
A random variable X is said to be sub-Gaussian if it satisfies that, there
exists K1 > 0 such that for all t ≥ 0,

P{|X| ≥ t} ≤ 2 exp(−t2/K2
1).

The sub-Gaussian norm of X, denoted by ∥X∥ψ2, is defined by any one
of the following two equivalent expressions:

∥X∥ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2} = sup
p≥1

p−1/2∥X∥p.

One important theorem, due to Hanson & Wright (1971, [3]), provides the
tail probability of the quadratic form of independent Sub-Gaussian vari-
ables.
Consider X = (X1, ..., Xn), the entries of which are n independent cen-
tered sub-Gaussian random variables such that max

1≤i≤n
∥Xi∥ψ2 ≤ K for

some K > 0. Then for XTAX, a quadratic form such that A = (aij)n×n is
a symmetric matrix, we have

P{|XTAX − EXTAX| > t} ≤ 2 exp(−cmin{ t2

K4∥A∥2
HS

,
t

K2∥A∥2}
). (1)

Tangent Decoupling

Suppose (Ω,F , {Fi},P, ) is a filtered probability space with {Fi}∞
i=1 a non-

decreasing sequence of σ-fields and Fi ⊂ F for all i. Let {ei} and {di} be
two sequences of random variables adapted to the σ-fields {Fi}. Then
{ei} and {di} are said to be tangent with respect to {Fi} if, for all i ≥ 1,

L (di|Fi−1) = L (ei|Fi−1), (2)

where L (di|Fi−1) denotes the conditional law of di given Fi−1. A se-
quence {ei} adapted to {Fi} is said to satisfy the conditional indepen-
dence (CI) condition if there exists a σ-field G ⊂ F , such that {ei} is con-
ditionally independent given G and L (ei|Fi−1) = L (ei|G). A sequence
{ei} which satisfies the CI condition and which is also tangent to {di} is
said to be a a decoupled tangent sequence to {di}.

Fig. 1: Construction of Tangent Sequences

Fig. 2: Example in Random Sampling

In 1999, de la Peña and Giné [2] provide the following lemma: Let {Xi}
be a sequence of independent random variables, {X̃i} and independent
copy of {Xi} and N be a stopping time adapted to σ({X1, ..., Xi}). Let
fj : Rj −→ R, j = 1, 2, ..., be a sequence of measurable functions. Then
the sequence

{fj(X1, ..., Xj−1;Xj)I{N≥j}
is tangent to

{fj(X1, ..., Xj−1; X̃j)I{N≥j}

with respect to Fn := σ({X1, ..., Xn; X̃1, ..., X̃n}).

Decoupling Inequality for MGF

The following lemma, introduced by de la Peña in 1994 [1], serves as the central
tool for the modern proof of Hanson-Wright inequality. Let {di} be a sequence of
random variables adapted to an increasing sequence of σ-fields {Fi} ⊂ F . Let {ei}
be any {Fi}-tangent sequence to {di} with {ei} satisfying conditional independence
condition given G. Then, for all G-measurable random variables g ≥ 0 and all finite
λ,

E
g exp(λ n∑

i=1
di)

 ≤ E
g2 exp(2λ n∑

i=1
ei)

 . (3)

Fig. 3: Sub-Gaussian Bound v.s. Sub-Exponential Bound

Main Theorem

Given X = (X1, ..., Xn), the entries of which are n independent centered sub-
Gaussian random variables such that max

1≤i≤n
∥Xi∥ψ2 ≤ K for some K > 0, and

Y = XTAX, a quadratic form such that A = (aij)n×n, with aii = 0 for all i = 1,..., n,
the tail probability of Y satisfies

P{|Y | > t} ≤ 2 exp(−cmin{ t2

K4∥A∥2
HS

,
t

K2∥A∥2}
). (4)

We provide the pivotal part of the proof, where tangent decoupling appears. Replac-
ing Xi by Xi

K for all i, we can degenerate this proof such that max
1≤i≤n

∥Xi∥ψ2 ≤ 1. We

notice that P{|Y | > t} = P{Y > t} + P{Y < −t}, and we start to bound P{Y > t}.
By Markov’s inequality, for any λ > 0,

P(Y > t) = P(exp(λY ) > exp(λt)) ≤ exp(−λt)E exp(λY ).

Then, according to the aforementioned lemma, setting N = n a.s. and for 2 ≤ j ≤
n, we have that dj = fj(X1, ..., Xj−1;Xj) = ∑j−1

i=1 2aijXiXj ∈ Fj is tangent to
ej = fj(X1, ..., Xj−1; X̃j) = ∑j−1

i=1 2aijXiX̃j ∈ F̃j, where Fj = σ({X1, ..., Xj}) and
F̃j = σ({X1, ..., Xj; X̃i, ..., X̃j}. And by the decoupling inequality with g = 1 a.s., we
have

E exp(λY ) = E exp(λ n∑
j=2

j−1∑
i=1

2aijXiXj) = E exp(λ n∑
j=2

dj)

≤
√√√√√√√E exp(2λ n∑

j=2
ej) =

√√√√√√√√E exp(2λ n∑
j=2

X̃j
j−1∑
i=1

2aijXi)

=


E


E (exp(4λ n∑

j=2
X̃j

j−1∑
i=1

aijXi)|Fn)
︸ ︷︷ ︸

=:EFn





1
2

When conditioning X1, ..., Xn, we can to bound EFn by the sub-Gaussian properties
of X̃1, ..., X̃n, as X̃i’s are i.i.d. copy of Xi’s.

Remarks

• The actual bound we can minimize, with some additional inequalities,
is

P(|Y | > t) ≤



2 exp


−t2

256e2(n− 1)∥A∥2
HS

}
 , if t ≤ 16

√
2(n− 1)e∥A∥HS,

2 exp

n− 1

2
− t

8
√

2e∥A∥HS

 , otherwise,

(5)

• To obtain Hanson-Wright inequality, we need to use Bernstein-type
inequality (see [4]). The inequality (1) allows the Y to be the quadratic
form, where the diagonal entry of A can be nonzero.

Applications and Consequences

• Concentration of random vectors: Let X = (X1, ..., Xn) ∈ Rn
be a random vector with independent, centered, unit variance, sub-
Gaussian coordinates. Let B be a fixed m × n matrix, then with
K = maxi∥Xi∥ψ2,

P{|∥BX∥2
2 − ∥B∥2

HS| ≥ t} ≤ 2 exp
−cmin(t, t2) 1

K4∥B∥2

 .

And with the following implication:

|∥BX∥2
2 − ∥B∥HS| ≥ δ∥B∥HS =⇒ |∥BX∥2

2 − ∥B∥2
HS| ≥ ϵ∥2

HS

for some ϵ > 0, we obtain

P{|∥BX∥2 − ∥B∥HS| ≥ t} ≤ 2 exp
−

ct2

K4∥B∥2

 .

• Distance to a subspace: Consider the same X aforementioned,
and E a subspace of Rn with dimension d. Then for any t ≥ 0

P∥dist(X,E)| −
√
n− d| > t} ≤ 2 exp(−ct2/K4).

Open Questions

We invite enthusiastic individuals to either substantiate or disprove that
the inequality (5) is "sharp". Should this inequality be found not to be
sharp, the ensuing question pertains to methods for improving this in-
equality.
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